Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Sustainability ; 14(3):1235, 2022.
Article in English | ProQuest Central | ID: covidwho-1686979

ABSTRACT

A detailed molecular fingerprint of raw pyrolysis oil from plastic wastes is a new research area. The present study focuses for the first time on the chemical recycling of plastic marine litter;we aim to chemically characterize the obtained raw pyrolysis oil and its distillates (virgin naphtha and marine gasoil) via GC-MS and FT-IR. For all samples, more than 30% of the detected compounds were identified. 2,4-dimethyl-1-heptene, a marker of PP pyrolysis, is the most represented peak in the chemical signature of all the marine litter pyrolysis samples, and it differentiates commercial and pyrolysis marine gasoil. The presence of naphthalenes is stronger in commercial gasoil, compared to its pyrolysis analog, while the opposite holds for olefins. The overlap between the two molecular fingerprints is impressive, even if saturated hydrocarbons are more common in commercial gasoil, and unsaturated compounds are more common in the gasoil derived from pyrolysis. A technical comparison between the commercial marine gasoil and the one obtained from the marine litter pyrolysis is also attempted. Gasoil derived from marine litter fully complies with the ISO8217 standards for distillate marine fuel. On the other hand, the virgin naphtha is particularly rich in BTX, ethylbenzene, styrene, and alpha olefins, which are all important recoverable platform chemicals for industrial upcycling.

2.
Sci Total Environ ; 783: 146951, 2021 Aug 20.
Article in English | MEDLINE | ID: covidwho-1171923

ABSTRACT

The Lagoon of Venice is a continuously evolving ecosystem that rapidly responds to anthropic stressors. The UNESCO World Heritage site "Venice and its Lagoon", is one of the top tourist destinations in the world. Mass tourism increases marine litter, water traffic emissions, solid waste, and sewage release. Plastic marine litter is not only a major aesthetic problem diminishing tourists experience of Venice, it also leaches contaminants into the seawater. Since there is a dearth in the literature regarding microplastic leachable compounds and overtourism related pollutants, the project studied the Head Space-Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) molecular fingerprint of volatile lagoon water pollutants, to gain insight into the extent of this phenomenon in August 2019. The chromatographic analyses enabled the identification of 40 analytes related to the presence of polymers in seawater, water traffic, and tourists habits. In Italy, on the 10th March 2020, the lockdown restrictions were enforced to control the spread of the SARS-CoV-2 infection; the ordinary urban water traffic around Venice came to a halt, and the ever-growing presence of tourists suddenly ceased. This situation provided a unique opportunity to analyze the environmental effects of restrictions on VOCs load in the Lagoon. 17 contaminants became not detectable after the lockdown period. The statistical analysis indicated that the amounts of many other contaminants significantly dropped. The presence of 9 analytes was not statistically influenced by the lockdown restrictions, probably because of their stronger persistence or continuous input in the environment from diverse sources. Results signify a sharp and encouraging pollution decrease at the molecular level, concomitant with the anthropogenic stress release, even if it is not possible to attribute quantitatively the VOCs load variations to specific sources (e.g., tourists' habits, urban water traffic, plastic pollution).


Subject(s)
COVID-19 , Environmental Pollutants , Volatile Organic Compounds , Water Pollutants, Chemical , Communicable Disease Control , Ecosystem , Environmental Monitoring , Environmental Pollutants/analysis , Humans , Italy , Microplastics , Plastics , SARS-CoV-2 , Seawater , Tourism , Water , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL